Raising plasma fatty acid concentration induces increased biogenesis of mitochondria in skeletal muscle.

نویسندگان

  • Pablo Garcia-Roves
  • Janice M Huss
  • Dong-Ho Han
  • Chad R Hancock
  • Eduardo Iglesias-Gutierrez
  • May Chen
  • John O Holloszy
چکیده

A number of studies have reported that a high-fat diet induces increases in mitochondrial fatty acid oxidation enzymes in muscle. In contrast, in two recent studies raising plasma free fatty acids (FFA) resulted in a decrease in mitochondria. In this work, we reevaluated the effects of raising FFA on muscle mitochondrial biogenesis and capacity for fat oxidation. Rats were fed a high-fat diet and given daily injections of heparin to raise FFA. This treatment induced an increase in mitochondrial biogenesis in muscle, as evidenced by increases in mitochondrial enzymes of the fatty acid oxidation pathway, citrate cycle, and respiratory chain, with an increase in the capacity to oxidize fat, as well as an increase in mitochondrial DNA copy number. Raising FFA also resulted in an increase in binding of peroxisome proliferator-activated receptor (PPAR) delta to the PPAR response element on the carnitine palmitoyltransferase 1 promoter. We interpret our results as evidence that raising FFA induces an increase in mitochondrial biogenesis in muscle by activating PPARdelta.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The Effect of Low Volume High Intensity Interval Training on Sarcolemmal Content of Fatty Acid Transport Proteins (FAT/CD36 and FABPpm) in Young Men

High-intensity interval training (HIT) induces skeletal muscle metabolic and performance adaptations that resemble traditional endurance training despite a low total exercise volume. On the other hand, fatty acid oxidation is increases in skeletal muscle with endurance training. This process is regulated in several sites, including the transport of fatty acids across the plasma membrane. The...

متن کامل

Skeletal Muscle-Specific Overexpression of PGC-1α Induces Fiber-Type Conversion through Enhanced Mitochondrial Respiration and Fatty Acid Oxidation in Mice and Pigs

Individual skeletal muscles in the animal body are heterogeneous, as each is comprised of different fiber types. Type I muscle fibers are rich with mitochondria, and have high oxidative metabolisms while type IIB fibers have few mitochondria and high glycolytic metabolic capacity. Peroxisome proliferator-activated receptor gamma coactivator 1α (PGC-1α), a transcriptional co-activator that regul...

متن کامل

Hypothalamic malonyl-CoA triggers mitochondrial biogenesis and oxidative gene expression in skeletal muscle: Role of PGC-1alpha.

Previous investigations show that intracerebroventricular administration of a potent inhibitor of fatty acid synthase, C75, increases the level of its substrate, malonyl-CoA, in the hypothalamus. The "malonyl-CoA signal" is rapidly transmitted to skeletal muscle by the sympathetic nervous system, increasing fatty acid oxidation, uncoupling protein-3 (UCP3) expression, and thus, energy expenditu...

متن کامل

Effect of temperature on fatty acid metabolism in skeletal muscle mitochondria of untrained and endurance-trained rats

We studied the effects of various assay temperatures, representing hypothermia (25°C), normothermia (35°C), and hyperthermia (42°C), on the oxidation of lipid-derived fuels in rat skeletal muscle mitochondria of untrained and endurance-trained rats. Adult 4-month-old male Wistar rats were assigned to a training group (rats trained on a treadmill for 8 weeks) or a sedentary control group. In ske...

متن کامل

Fatty acid binding protein facilitates sarcolemmal fatty acid transport but not mitochondrial oxidation in rat and human skeletal muscle.

The transport of long-chain fatty acids (LCFAs) across mitochondrial membranes is regulated by carnitine palmitoyltransferase I (CPTI) activity. However, it appears that additional fatty acid transport proteins, such as fatty acid translocase (FAT)/CD36, influence not only LCFA transport across the plasma membrane, but also LCFA transport into mitochondria. Plasma membrane-associated fatty acid...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Proceedings of the National Academy of Sciences of the United States of America

دوره 104 25  شماره 

صفحات  -

تاریخ انتشار 2007